Local Gaussian Process Approximation for Large Computer Experiments

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Gaussian process approximation for large computer experiments

We provide a new approach to approximate emulation of large computer experiments. By focusing expressly on desirable properties of the predictive equations, we derive a family of local sequential design schemes that dynamically define the support of a Gaussian process predictor based on a local subset of the data. We further derive expressions for fast sequential updating of all needed quantiti...

متن کامل

Variable Selection for Gaussian Process Models in Computer Experiments

In many situations, simulation of complex phenomena requires a large number of inputs and is computationally expensive. Identifying the inputs which most impact the system so that these factors can be further investigated can be a critical step in the scientific endeavor. In computer experiments, it is common to use a Gaussian spatial process to model the output of the simulator. In this articl...

متن کامل

Multiresolution Kernel Approximation for Gaussian Process Regression

(a) (b) (c) Figure: (a) In a simple blocked low rank approximation the diagonal blocks are dense (gray), whereas the off-diagonal blocks are low rank. (b) In an HODLR matrix the low rank off-diagonal blocks form a hierarchical structure leading to a much more compact representation. (c) H2 matrices are a refinement of this idea. (a) In simple blocked low rank approximation the diagonal blocks a...

متن کامل

Hierarchically-partitioned Gaussian Process Approximation

The Gaussian process (GP) is a simple yet powerful probabilistic framework for various machine learning tasks. However, exact algorithms for learning and prediction are prohibitive to be applied to large datasets due to inherent computational complexity. To overcome this main limitation, various techniques have been proposed, and in particular, local GP algorithms that scales ”truly linearly” w...

متن کامل

Adaptive Gaussian Predictive Process Approximation

We address the issue of knots selection for Gaussian predictive process methodology. Predictive process approximation provides an effective solution to the cubic order computational complexity of Gaussian process models. This approximation crucially depends on a set of points, called knots, at which the original process is retained, while the rest is approximated via a deterministic extrapolati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Graphical Statistics

سال: 2015

ISSN: 1061-8600,1537-2715

DOI: 10.1080/10618600.2014.914442